Guía I:

Aproximaciones y potencias

Aproximaciones

• Truncamiento: Cortar en los decimales que se indiquen (a la décima, centésima, etc) Ejemplo: 6,657 = 6,6 (truncado a la décima)

• **Redondeo:** Cortar y mirar la primera cifra que se elimina.

✓ Mayor o igual que 5, se aumenta una unidad la última que se pone

Ejemplo: 6,67 = 6,7

✓ Menor que 5, se deja igual

Ejemplo: 6,63 = 6,6

• **Defecto:** Valor aproximado menor que el real.

Ejemplo: 6,6= 6

• Exceso: Valor aproximado mayor que el real.

Ejemplo: 6,6= 7

Ejercicios

- 1. Al redondear a la décima el número 2,7453, resulta
 - A) 3
 - B) 2,8
 - C) 2,7
 - D) 2,75
 - E) 2,745
- 2. Al redondear a la milésima el número 4,5387, resulta
 - A) 4,5
 - B) 4,54
 - C) 4,538
 - D) 4,539
 - E) 5
- Al truncar a la centésima el número 3,6765, resulta
 - A) 3,6
 - B) 3,67
 - C) 3,68
 - D) 3,676
 - E) 3,677

- 4. Al truncar a la milésima el número 21, 46, resulta
 - A) 21,464
 - B) 21,465
 - C) 21,466
 - D) 21,46
 - E) 21,4
- 5. Respecto del número <u>62</u>, ¿cuál(es) de las siguientes 7

afirmaciones es (son) verdadera(s)?

- I) Redondeado a la unidad es 8.
- II) Truncado a la décima es 8,8.
- III) Redondeado a la centésima es 8,86.
- A) Solo II
- B) Solo III
- C) Solo I y II
- D) Solo II y III
- E) I, II y III

Potencias

Una potencia es el producto de factores iguales, es decir,

$$a^{n} = a \cdot a \cdot a \cdot a \cdot a \cdot \dots \cdot a$$
n veces a como factor

Propiedades de las potencias

Propiedades de las potencias con respecto a la multiplicación	Propiedades de las potencias con respecto a la división
i) Multiplicación de potencias de igual base	i) División de potencias de igual base
$a^n \cdot a^m = a^{n+m}$	$a^{n}: a^{m} = \frac{a^{n}}{a^{m}} = a^{n-m}$
Ejemplo: $3^2 \cdot 3^3 = 3^{2+3} = 3^5 = 243$	Ejemplo: $4^5:4^7=\frac{4^5}{4^7}=4^{5-7}=4^{-2}$
	-
ii) Multiplicación de potencias de distinta base	ii) División de potencias de distinta base e igual
e igual exponente	exponente
$a^n \cdot b^n = (a \cdot b)^n$ ó $(a \cdot b)^n = a^n \cdot b^n$	$a^{n}:b^{n}=(a:b)^{n}=\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
Ejemplo: $5^2 \cdot 3^2 = (5 \cdot 3)^2 = 15^2 = 225$	Ejemplo: $10^3 : 5^3 = (10:5)^3 = (\frac{10}{5})^3 = 2^3 = 8$

Propiedades de potencias que no necesariamente involucran las operaciones anteriores:

Potencia de una potencia $\left(a^n\right)^m=a^{n\cdot m}$	Ejemplo: $(p^3)^2 = p^{32} = p^6$	
Potencia de exponente negativo i) Base entera $a^{-n} = \left(\frac{1}{a}\right)^n = \frac{1}{a^n} = \frac{1}{a^n}$	Ejemplo: $3^{-2} = \left(\frac{1}{3}\right)^2 = \frac{1}{3^2} = \frac{1}{9}$	
ii) Base racional $ \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n} $	Ejemplo: $ \left(\frac{2}{3}\right)^{-5} = \left(\frac{3}{2}\right)^5 = \frac{3^5}{2^5} = \frac{243}{32} $	
Potencia de exponente cero $a^0=1$	Ejemplos: i) $7^0 = 1$ ii) $(2x^3 - 5x + 3)^0 = 1$	
Potencias de base 1 $1^n = 1$	Ejemplo: $1^{50} = 1$	

1.
$$\left(\frac{1}{2}a^{-2}\right)^{-3} =$$

B)
$$8a^{-5}$$

C)
$$\frac{1}{2}a^{-5}$$

D)
$$\frac{1}{8} a^{-6}$$

E)
$$\frac{1}{2}a^{6}$$

2. Si $2^{2x} = 8$, ¿cuántas veces **x** es igual a 9?

B)
$$\frac{9}{2}$$

D)
$$\frac{3}{2}$$

E) Ninguna de las anteriores

3.
$$4^{-2} + 2^{-3} - 2^{-4} =$$

A)
$$\frac{1}{8}$$

B)
$$\frac{1}{4}$$

4. C)
$$\frac{1}{6}$$

5.
$$(2a)^3 \bullet (3a)^2 =$$

- A) 72a²
- B) 72a⁵
- . C) 6a⁵
- D) 36a⁶
- E) 36a⁵

6. ¿Cuál es la mitad de 26?

- A) 2⁵
- B) 2³
- C) 1^6

D)
$$\left(\frac{1}{2}\right)^3$$

E)
$$\left(\frac{1}{2}\right)^6$$

7. ¿Cuál(es) de las siguientes igualdades es(son) siempre verdadera(s)?

$$I) a^n \cdot a^n = a^{2n}$$

II)
$$a^{2n} - a^n = a^n$$

III)
$$(2a^n)^2 = 2a^{2n}$$

- A) Solo I
- B) Sólo II
- C) Solo III
- D) Solo I y III
- E) Solo II y III

Notación científica

La forma general de un número en notación científica es

a x
$$10^n$$
 donde $1 \le a < 10$ y n es un entero.

Veamos algunos ejemplos:

Número	¿Notación Científica?	Explicación
Numero	Sinotacion Cientinica:	Explicación
1.85 x 10 ⁻²	SÍ	1≤1.85 <10
		-2 es un entero
1.083 x 10 ^{1/2}	no	$\frac{1}{2}$ no es un entero
0.82 x 10 ¹⁴	no	0.82 no es ≥ 1
10 x 10 ³	no	10 no es < 10

Ejercicios

- 1. ¿Cuál de los siguientes números está escrito en el formato de notación científica?
 - A) 4.25 x 10^{0.08}
 - B) 0.425×10^7
 - C) 42.5×10^5
 - D) 4.25×10^6

$\frac{0,0009 \cdot 0,0000002}{6 \cdot 0,0003} =$

- 2. A) 10-15
- B) 10-12
- C) 10-7
- D) 10-6
- E) Ninguno de los valores anteriores
- 3. El orden de los números: $M = 4,51\cdot10-6$; $N = 45,1\cdot10-5$ y $P = 451\cdot10-7$, de menor a mayor, es
- A) M, N, P
- B) P, M, N
- C) N, M, P
- D) P, N, M
- E) M, P, N

4.
$$\frac{3.6 \cdot 10^6 \cdot 0.00006}{20.000.000} =$$

- A) $1,08 \cdot 10^{-4}$
- B) $1,08 \cdot 10^{-5}$
- C) $1.08 \cdot 10^{-6}$
- D) $1.08 \cdot 10^{-7}$
- E) $1.08 \cdot 10^{-15}$
- 5. Si $p = 5.2 \cdot 10^{-3}$ y $q = 2 \cdot 10^{-3}$, ¿cuál(es) de las siguientes igualdades se cumple(n)?
 - I) $p + q = 7.2 \cdot 10^{-3}$
 - II) $p \cdot q = 1.04 \cdot 10^{-5}$
 - III) p q = 3.2
- A) Solo I
- B) Solo II
- C) Solo III
- D) Solo I y II
- E) Solo I y III